Approaching the 5th anniversary of the 2002 M7.9 Denali Fault Earthquake Natalia A. Ruppert Alaska Earthquake Information Center Geophysical Institute University of Alaska Fairbanks Seismic Hazards Safety Commission September 18/2007

Denali fault

11/3 M 7.9

10/23 M 6.7

Nenana River

Parks Highway

Photo by W.Wallace

R. A.

Earthquake Sequence

- Started with the M6.7 Nenana Mountain earthquake on October 23, 2002
- The main Denali event on November 3, 2002 started with the M7.2 thrust subevent on previously unknown splay fault
- Continued as right-lateral strike slip event along main Denali fault
- Rupture transferred onto Totschunda branch

Internet Community Intensity Map

USGS Community Internet Intensity Map (47 miles E of Cantwell, Alaska) ID:22614036 13:12:41 AKST NOV 3 2002 Mag=7.9 Latitude=N63.52 Longitude=W147.46

- Not detailed enough
- Maximum Intensity VIII

Microseismic study

By A. Martirosyan, 2003

Maximum reported
 Intensity - IX

Measured Surface Offsets

Total of 342 km of surface faulting
 Maximum

horizontal 8.8 m

Maximum
 vertical ~2.8 m

Haeussler et al., 2004

Directivity Effects

Energy from the largest subevent (#3) propagated Mainly to the southeast. Plot by A.Frankel (USGS)

Co-seismic Motions (from GPS)

Co-seismic Motions (from GPS)

Slip(cm)

• Based on regional seismic data and GPS displacements

ShakeMap

USGS Rapid Instrumental Intensity Map for Denali Earthquake NOV 3 2002 01:12:41 PM AKST M 7.9 N63.52 W147.46 Depth: 5.0km ID:22614036

56°155°154°153°	152°151°150°14	9°-148°-147°-146°-145	-144°-143°-142°-141°

PERCEIVED SHAKING	Notfelt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC (%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL.(om/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL INTENSITY	1	IFIII	IV	٧	VI	VII	VIII	IX	X+

- Produced within days of the quake
- Based on ~50 measurements in the state (2/3 from Anchorage)

USGS Rapid Instrumental Intensity Map for event: 22614036 Sun Nov 3, 2002 10:12:41 PM GST M 7.9 N63.52 W147.53 Depth: 5.0km ID:22614036

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL INTENSITY	1	11-111	IV	v	VI	VII	VIII	IX	34

• By D.Wald (USGS), 2003-2004

• Composite dataset: ground motion measurements, microseismic survey, slip distribution

Distal effects

Felt as far as Washington State (~1,000 km away)
Triggered seismicity at volcanic and geothermal centers (up to 3,000 km away)
Seiches in distant lakes and pools (up to 3,000 km away)

Early Aftershocks

2 hours of data = 40+M>=4 aftershocks

After S.Estes and S. McNutt

Aftershock Statistics

Cumulative Number: >40,000 Recorded aftershocks

Magnitude vs log time, minutes

Regional Seismicity

Before 2002

Regional Seismicity and Recorded Aftershocks

b- and *a*-values for the aftershock sequence

logN=*a*-*b*M *a*-value (activity rate)

b-value

- b-value is mapped on 0.1x0.1° grid with the nearest 150 events per sample.
- The highest *b*-values (*b*=1.4) are found near the epicenter. The eastern part of the rupture is characterized by much lower *b*values (*b*=0.7).

a-value is computed for volumes of radii 5 km.

The highest activity is near the epicenter. The eastern part of the rupture is characterized by lower aftershock productivity.

Seismicity rate changes

- Seismicity rate change (or β-value) is mapped on 0.1x0.1° grid with the nearest 100 events per sample using seismicity with M>=1.6.
- The time period 1989-2000 is compared with 2000-09/2002.

• We observe a significant increase in the seismicity rate within the epicentral region of the M7.9 event (node A).

• A less sharp decrease in the seismicity rate is observed ~100 km north of the M7.9 epicenter (node B).

Focal mechanism data

Stress Field: Maximum Horizontal Compressive Directions

Conclusions

- The M7.9 2002 Denali fault earthquake was a complex event.
- Rich aftershock dataset is still being assembled.
- It will take ~9 more years for seismicity to go back to the background level.
- The 2002 Denali earthquake is being used as a model event to forecast rupture effects in other areas, such as rupture of the San Andreas fault in California.